0

分享

[学术论文] Learning from Imperfect Demonstrations with Self-Supervision for Robotic Manipul

49 0
发表于 2025-4-2 14:11:55 | 显示全部楼层 阅读模式
Improving data utilization, especially for imperfect data from task failures, is crucial for robotic manipulation due to the challenging, time-consuming, and expensive data collection process in the real world. Current imitation learning (IL) typically discards imperfect data, focusing solely on successful expert data. While reinforcement learning (RL) can learn from explorations and failures, the sim2real gap and its reliance on dense reward and online exploration make it difficult to apply effectively in real-world scenarios.

In this work, we aim to conquer the challenge of leveraging imperfect data without the need for reward information to improve the model performance for robotic manipulation in an offline manner. Specifically, we introduce a Self-Supervised Data Filtering framework (SSDF) that combines expert and imperfect data to compute quality scores for failed trajectory segments.

High-quality segments from the failed data are used to expand the training dataset. Then, the enhanced dataset can be used with any downstream policy learning method for robotic manipulation tasks. Extensive experiments on the ManiSkill2 benchmark built on the high-fidelity Sapien simulator and real-world robotic manipulation tasks using the Franka robot arm demonstrated that the SSDF can accurately expand the training dataset with high-quality imperfect data and improve the success rates for all robotic manipulation tasks.




本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×

回复

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

加入群聊

Copyright © 2021-2025 Open X-Humanoid 版权所有 All Rights Reserved.

相关侵权、举报、投诉及建议等,请发 E-mail:opensource@x-humanoid.com

Powered by Discuz! X5.0|京ICP备2024078606号-2|京公网安备11011202101078号

在本版发帖返回顶部
快速回复 返回顶部 返回列表